Seminar Group:
Speaker:
Address:
Date:
Host:
Versatility and functionality of a tool arise from the combination of its parts and the interactions that can be controllably executed with it. That applies on large as well as on small scales. For example, coupled quantum dot pairs are much more versatile than single quantum dots. Their discrete electronic states and optical transitions can be tuned in-situ over tens of meV. As a result it is possible to control and realize coupling between varieties of excitations of the solid state system, ranging from different spin states, phonons to the mechanical motion of the system. In this seminar I will review the unique properties of coupled quantum dots and discuss their advantages as tools in quantum technologies, such as quantum photonics and quantum sensing.
Literature:
1. C. Jennings, et al., “Self-Assembled InAs/GaAs Coupled Quantum Dots for Photonic Quantum Technologies”, Adv. Quant. Techn. 3, 1900085 (2019) https://doi.org/10.1002/qute.201900085
2. S. G. Carter, et. al., “Spin-Mechanical Coupling of an InAs Quantum Dot Embedded in a Mechanical Resonator”, Phys. Rev. Lett. 121, 246801 (2018). https://doi.org/10.1103/PhysRevLett.121.246801
3. P. Dugar, et at., “Geometry-based circulation of local photonic transport in a triangular metastructure”, Phys. Rev. A, 102, 023704 (2020), https://link.aps.org/doi/10.1103/PhysRevA.102.023704
4. M. L. Kerfoot, et.al., “Optophononics with coupled quantum dots“ Nature Commun. 5:3299 doi: 10.1038/ncomms4299 (2014). http://dx.doi.org/10.1038/ncomms4299
Zoom: please contact host at speck [at] ucsb [dot] edu for details.