Reducing Platinum Content in Proton Exchange Membrane Fuel Cells

Julia Pustizzi

Mentor: Jonathan Burk

PI: Steve Burrato

Introduction to Fuel Cells

 current energy: fuel and nuclear power

fuel cells as "clean"

source

Current Challenge: DOE Fuel Cell Cost Goal

J. S. Spendelow and D. C. Papageorgopoulos. (2011).

Fuel Cell

Our Goal

 Reduce Platinum content by depositing Platinum through the membrane

Electrochemical Deposition Through the Membrane

Commercial Membrane Electrode Assembly

- = effective platinum
- = ineffective platinum

This Summer's Focus

Platinic Acid

OH OH OH OH OH OH OH -

Chloroplatinic Acid

$$\begin{bmatrix} H & O \\ H & H \end{bmatrix}_{2}^{+} \begin{bmatrix} CI & CI \\ CI & CI \\ CI & CI \end{bmatrix}^{2}$$

- 2 H+

http://www.guidechem.com/products/ 51850-20-5.html http://en.wikipedia.org/wiki/ Chloroplatinic_acid

This Summer's Focus

Platinic Acid plating solution

Cathodic Process:

$$H_2Pt(OH)_6 + 4 H^+_{(aq)} + 4e^ Pt_{(s)}^{\leftarrow} + 6 H_2O_{(l)}$$
 $E^{\circ}_c = 0.928V^*$

Anodic Process:

$$O_{2(g)} + 4 H^{+}_{(aq)} + 4e^{-}$$
 $2 \stackrel{\bigstar}{H}_{2}O_{(I)}^{}$ $E^{\circ}_{a} = 1.032V$ $H_{2}Pt(OH)_{6}^{}$ $Pt^{>}_{(s)} + 4H_{2}O_{(I)} + O_{2(g)}^{}$ $E^{\circ}_{cell} = -0.104V$ $\Delta G^{\circ}_{cell} = -nFE^{\circ}_{cell}^{} = > \Delta G^{\circ}_{cell}^{} > 0$

^{*}Nagano Y. et al. *J. Chem. Thermodynamics* **2002**, *34*, 409-412.

Characterizing the Solution

- Qualitative Data
 - Relationship betwee
 i_p and scan rate
- Quantitative Data
 - Charge transfer coefficient- $\alpha \eta_{\alpha}$
 - Diffusion coefficient- D_0

http://webcache.googleusercontent.com/search? q=cache:http://220.227.100.58/Experiments/ onlineExperiments/Experiment1/setup.aspx

http://people.clarkson.edu/~droy/ Corrosion EIS.htm

Scan Rate

Fast Scan Rate (100 mV/s)

Lu et al.

i_p is directly proportional to υ^½ = diffusion limited

Characterizing the Solution: Finding $\alpha\eta_{\alpha}$

$$i_p = 0.227 nFAC_o^* k^o \exp\left[\frac{-\alpha \eta_\alpha F(E_p - E^{o'})}{RT}\right]$$

i_n= peak current (A)

n=number of electrons, 4

F= Faraday's constant, 96485 C/mol

A=area of the electrode, 1cm²

C_o =concentration of solution 5.0×10⁻⁶ mol/cm³

k°= rate constant (cm/s)

 $\alpha \eta_{\alpha}$ = charge transfer coefficient

 E_p = potential at i_p , (V)

E^{o'}= equilibrium potential (V)

R= gas constant 8.314 J/mol K

T= temperature 298.15K

Characterizing the Solution: Finding $\alpha \eta_{\alpha}$

$$i_p = 0.227 nFAC_o^* k^o \exp \left[\frac{-\alpha \eta_\alpha F(E_p - E^{o'})}{RT} \right]$$

Plot $\ln i_p \text{ vs } (E_p - E^{o'})$

$$slope = \frac{\alpha \eta_{\alpha} F}{RT}$$

 $\alpha \eta_{\alpha} = 0.197286$

Characterizing the Solution: Finding D_o

$$i_p = 2.99 \times 10^5 n(\alpha \eta_\alpha)^{1/2} A D_o^{1/2} C_o v^{1/2}$$

 i_p = peak current (A)

n=number of electrons, 4

 $\alpha \eta_{\alpha}$ = charge transfer coefficient

A=area of the electrode, 1cm²

D_o= diffusion coefficient, cm²/s

 C_o =concentration of solution 5.0×10⁻⁶ mol/cm³

v= scan rate, V/s

Characterizing the Solution: Finding D_o

$$i_p = 2.99 \times 10^5 n (\alpha \eta_{\alpha})^{1/2} A D_o^{-1/2} C_o v^{1/2}$$

Plot v^{1/2} vs i_p

slope=2.99x10⁵n(
$$\alpha n_{\alpha}$$
)^{1/2}AD_o $^{\frac{1}{2}}$ C_o

$$D_0 = 5.217 \times 10^{-9} \text{ cm}^2/\text{s}$$

Characterizing the Solution: Conclusions

- Qualitative Data
 - Linear relationship between i_p and $v^{1/2}$ indicates reaction is diffusion limited

- Quantitative Data
 - Charge transfer coefficient- $\alpha_{\eta_{\alpha}}$ = 0.197286
 - Diffusion coefficient- $D_0 = 5.217 \times 10^{-9} \text{ cm}^2/\text{s}$

Why does D_o make sense?

Small $(E_p - E^{\circ\prime})$

Large (E_p – E°')

Why does D_o make sense?

Yu et al. 2010

Next Steps

• Use Platinic Acid solution to deposit Platinum through the membrane.

Electrochemical Deposition Through the Membrane

Acknowledgements

Dr. Steve Burrato Dr. Frank Kinnaman Jonathan Burk Nick Economou Suzanne Rich **Christopher Taylor** Daniel Degenhardt Mary McGuan Dr. Dotti Pak **UCSB Materials Research Lab National Science Foundation**